3.6.76 \(\int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x))}{a+b \sec (c+d x)} \, dx\) [576]

3.6.76.1 Optimal result
3.6.76.2 Mathematica [A] (verified)
3.6.76.3 Rubi [A] (verified)
3.6.76.4 Maple [A] (verified)
3.6.76.5 Fricas [F]
3.6.76.6 Sympy [F]
3.6.76.7 Maxima [F]
3.6.76.8 Giac [F]
3.6.76.9 Mupad [F(-1)]

3.6.76.1 Optimal result

Integrand size = 33, antiderivative size = 89 \[ \int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x))}{a+b \sec (c+d x)} \, dx=\frac {2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}-\frac {2 (A b-a B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a^2 d}+\frac {2 b (A b-a B) \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right )}{a^2 (a+b) d} \]

output
2*A*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+ 
1/2*c),2^(1/2))/a/d-2*(A*b-B*a)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1 
/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d+2*b*(A*b-B*a)*(cos(1/2*d 
*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*a/(a 
+b),2^(1/2))/a^2/(a+b)/d
 
3.6.76.2 Mathematica [A] (verified)

Time = 1.25 (sec) , antiderivative size = 128, normalized size of antiderivative = 1.44 \[ \int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x))}{a+b \sec (c+d x)} \, dx=\frac {a B \left (2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )-\frac {2 b \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}\right )-\frac {2 A \left (a E\left (\left .\arcsin \left (\sqrt {\cos (c+d x)}\right )\right |-1\right )-(a+b) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )+b \operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )\right ) \sin (c+d x)}{\sqrt {\sin ^2(c+d x)}}}{a^2 d} \]

input
Integrate[(Sqrt[Cos[c + d*x]]*(A + B*Sec[c + d*x]))/(a + b*Sec[c + d*x]),x 
]
 
output
(a*B*(2*EllipticF[(c + d*x)/2, 2] - (2*b*EllipticPi[(2*a)/(a + b), (c + d* 
x)/2, 2])/(a + b)) - (2*A*(a*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] - ( 
a + b)*EllipticF[ArcSin[Sqrt[Cos[c + d*x]]], -1] + b*EllipticPi[-(a/b), Ar 
cSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/Sqrt[Sin[c + d*x]^2])/(a^2*d)
 
3.6.76.3 Rubi [A] (verified)

Time = 0.66 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.98, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.303, Rules used = {3042, 3433, 3042, 3481, 3042, 3119, 3282, 3042, 3120, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x))}{a+b \sec (c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 3433

\(\displaystyle \int \frac {\sqrt {\cos (c+d x)} (A \cos (c+d x)+B)}{a \cos (c+d x)+b}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (A \sin \left (c+d x+\frac {\pi }{2}\right )+B\right )}{a \sin \left (c+d x+\frac {\pi }{2}\right )+b}dx\)

\(\Big \downarrow \) 3481

\(\displaystyle \frac {A \int \sqrt {\cos (c+d x)}dx}{a}-\frac {(A b-a B) \int \frac {\sqrt {\cos (c+d x)}}{b+a \cos (c+d x)}dx}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {A \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{a}-\frac {(A b-a B) \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{b+a \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{a}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}-\frac {(A b-a B) \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{b+a \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{a}\)

\(\Big \downarrow \) 3282

\(\displaystyle \frac {2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}-\frac {(A b-a B) \left (\frac {\int \frac {1}{\sqrt {\cos (c+d x)}}dx}{a}-\frac {b \int \frac {1}{\sqrt {\cos (c+d x)} (b+a \cos (c+d x))}dx}{a}\right )}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}-\frac {(A b-a B) \left (\frac {\int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}-\frac {b \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (b+a \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a}\right )}{a}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}-\frac {(A b-a B) \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a d}-\frac {b \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (b+a \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a}\right )}{a}\)

\(\Big \downarrow \) 3284

\(\displaystyle \frac {2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}-\frac {(A b-a B) \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a d}-\frac {2 b \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right )}{a d (a+b)}\right )}{a}\)

input
Int[(Sqrt[Cos[c + d*x]]*(A + B*Sec[c + d*x]))/(a + b*Sec[c + d*x]),x]
 
output
(2*A*EllipticE[(c + d*x)/2, 2])/(a*d) - ((A*b - a*B)*((2*EllipticF[(c + d* 
x)/2, 2])/(a*d) - (2*b*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2])/(a*(a + 
b)*d)))/a
 

3.6.76.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3282
Int[Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]/((a_.) + (b_.)*sin[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[d/b   Int[1/Sqrt[c + d*Sin[e + f*x]], x], x 
] + Simp[(b*c - a*d)/b   Int[1/((a + b*Sin[e + f*x])*Sqrt[c + d*Sin[e + f*x 
]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 
 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3433
Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]* 
(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.) + (f_.)*(x_)])^(p_.), x_Symbol] :> Sim 
p[g^(m + n)   Int[(g*Sin[e + f*x])^(p - m - n)*(b + a*Sin[e + f*x])^m*(d + 
c*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c 
- a*d, 0] &&  !IntegerQ[p] && IntegerQ[m] && IntegerQ[n]
 

rule 3481
Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)]))/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[ 
B/d   Int[(a + b*Sin[e + f*x])^m, x], x] - Simp[(B*c - A*d)/d   Int[(a + b* 
Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, 
 B, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 
3.6.76.4 Maple [A] (verified)

Time = 8.10 (sec) , antiderivative size = 295, normalized size of antiderivative = 3.31

method result size
default \(\frac {2 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \left (A \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a b -A \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b^{2}+A \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{2}-A \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a b +A \operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \frac {2 a}{a -b}, \sqrt {2}\right ) b^{2}-B \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{2}+B \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a b -B \operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \frac {2 a}{a -b}, \sqrt {2}\right ) a b \right )}{a^{2} \left (a -b \right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(295\)

input
int(cos(d*x+c)^(1/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c)),x,method=_RETURNVER 
BOSE)
 
output
2*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2 
*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*(A*EllipticF(cos(1/2*d*x+1/ 
2*c),2^(1/2))*a*b-A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*b^2+A*EllipticE( 
cos(1/2*d*x+1/2*c),2^(1/2))*a^2-A*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a* 
b+A*EllipticPi(cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1/2))*b^2-B*EllipticF(cos(1 
/2*d*x+1/2*c),2^(1/2))*a^2+B*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*a*b-B*E 
llipticPi(cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1/2))*a*b)/a^2/(a-b)/(-2*sin(1/2 
*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d* 
x+1/2*c)^2-1)^(1/2)/d
 
3.6.76.5 Fricas [F]

\[ \int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x))}{a+b \sec (c+d x)} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt {\cos \left (d x + c\right )}}{b \sec \left (d x + c\right ) + a} \,d x } \]

input
integrate(cos(d*x+c)^(1/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c)),x, algorithm= 
"fricas")
 
output
integral((B*sec(d*x + c) + A)*sqrt(cos(d*x + c))/(b*sec(d*x + c) + a), x)
 
3.6.76.6 Sympy [F]

\[ \int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x))}{a+b \sec (c+d x)} \, dx=\int \frac {\left (A + B \sec {\left (c + d x \right )}\right ) \sqrt {\cos {\left (c + d x \right )}}}{a + b \sec {\left (c + d x \right )}}\, dx \]

input
integrate(cos(d*x+c)**(1/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c)),x)
 
output
Integral((A + B*sec(c + d*x))*sqrt(cos(c + d*x))/(a + b*sec(c + d*x)), x)
 
3.6.76.7 Maxima [F]

\[ \int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x))}{a+b \sec (c+d x)} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt {\cos \left (d x + c\right )}}{b \sec \left (d x + c\right ) + a} \,d x } \]

input
integrate(cos(d*x+c)^(1/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c)),x, algorithm= 
"maxima")
 
output
integrate((B*sec(d*x + c) + A)*sqrt(cos(d*x + c))/(b*sec(d*x + c) + a), x)
 
3.6.76.8 Giac [F]

\[ \int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x))}{a+b \sec (c+d x)} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt {\cos \left (d x + c\right )}}{b \sec \left (d x + c\right ) + a} \,d x } \]

input
integrate(cos(d*x+c)^(1/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c)),x, algorithm= 
"giac")
 
output
integrate((B*sec(d*x + c) + A)*sqrt(cos(d*x + c))/(b*sec(d*x + c) + a), x)
 
3.6.76.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x))}{a+b \sec (c+d x)} \, dx=\int \frac {\sqrt {\cos \left (c+d\,x\right )}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )}{a+\frac {b}{\cos \left (c+d\,x\right )}} \,d x \]

input
int((cos(c + d*x)^(1/2)*(A + B/cos(c + d*x)))/(a + b/cos(c + d*x)),x)
 
output
int((cos(c + d*x)^(1/2)*(A + B/cos(c + d*x)))/(a + b/cos(c + d*x)), x)